Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Qing-Bin Li,* Wei-Chun Yang, Yong-Jun Han and Xiao-Jun Zhao

School of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China

Correspondence e-mail:
qingbin_li2006@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.042$
$w R$ factor $=0.106$
Data-to-parameter ratio $=12.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
11H-Dibenzo[b,e]azepin-6(5H)-one

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}$, the two benzene rings make a dihedral angle of $60.4(4)^{\circ}$. The crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and weak $\pi-\pi$ stacking, linking the molecules into ladders of dimers.

Comment

The title compound, (I), reported here, is an intermediate of epinastine, which is an antihistamine agent (Bakker et al., 2000; Bielory \& Ghafoor, 2005).

(I)

Bond lengths and angles in the molecule (Table 1) are in agreement with values quoted in previous reports (Schafer et al., 1993). The azepane ring system adopts a twist-boat conformation. Benzene ring C1-C6 and bonded atoms C7 and C14 are coplanar, the largest deviation from the mean plane being 0.020 (2) A for atom C5. The other benzene ring, C8C 13 , and bonded atoms C 7 and N 1 are also coplanar, the largest deviation from the mean plane being 0.018 (2) \AA. The two benzene rings make a dihedral angle of 60.4 (4) ${ }^{\circ}$.

Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) link the molecules into ladders of dimers, extending along the b axis (Fig. 2). The relatively short distance of

Figure 1
View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.
\qquad
3.791 (2) \AA between the centroids of benzene rings C8-C13 (at x, y, z and $-x, 1-y, 1-z$) indicates the presence of weak $\pi-\pi$ interactions, which contribute to the stability of the crystal packing.

Experimental

Anthraquinone was reacted with $\mathrm{NaN}_{3}(10 \mathrm{mmol})$ in sulfuric acid (10 mmol) and then reduced with $\mathrm{NaBH}_{4}(10 \mathrm{mmol})$ in trifluoroacetic acid $(10 \mathrm{mmol})$ to give the title compound (yield 89%). Purification was achieved by recrystallization from methanol (Jackson et al., 1992). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a dichloromethane solution at room temperature over a period of one week.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}$
$M_{r}=209.24$
Triclinic, $P \overline{1}$
$a=5.7993$ (14) £
$b=8.539$ (2) \AA
$c=11.319(3) \AA$
$\alpha=76.495(3)^{\circ}$
$\beta=83.689(3)^{\circ}$
$\gamma=78.879(3)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.964, T_{\text {max }}=0.989$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.107$
$S=1.05$
1844 reflections
145 parameters
H -atom parameters constrained
$V=533.6(2) \AA^{3}$
$Z=2$
$D_{x}=1.302 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless $0.45 \times 0.24 \times 0.14 \mathrm{~mm}$

2695 measured reflections 1844 independent reflections 1517 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.013$
$\theta_{\text {max }}=25.0^{\circ}$

Table 1

Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O1-C14	$1.2389(18)$	$\mathrm{C} 5-\mathrm{C} 14$	$1.486(2)$
$\mathrm{N} 1-\mathrm{C} 14$	$1.344(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.502(2)$
$\mathrm{N} 1-\mathrm{C} 13$	$1.4218(19)$		
			$111.39(14)$
$\mathrm{C} 14-\mathrm{N} 1-\mathrm{C} 13$	$129.40(13)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 14-\mathrm{C} 5$	$12.8(2)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.10	$2.8677(17)$	149
$\mathrm{C}^{\mathrm{H}} 11-\mathrm{H} 11 A \cdots 1^{\mathrm{ii}}$	0.93	2.49	$3.413(2)$	175

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $x, y+1, z$.

Figure 2
Part of the crystal packing, viewed down the a axis, showing the hydrogen-bonded (dashed lines) dimers linked to form ladders.

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for the aryl and N -bound H atoms.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

References

Bakker, R. A., Wieland, K., Timmerman, H. \& Leurs, R. (2000). Eur. J. Pharmacol. 387, 5-7.
Bielory, L. \& Ghafoor, S. (2005). Curr. Opin. Allergy. Clin. Immunol. 5, 437440.

Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT (Version 6.36a) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Jackson, W. R., Copp, F. C., Cullen, J. D., Guyett, F. J., Rae, I. D., Robinson, A. J., Pothoulackis, H., Serelis, A. K. \& Wong, M. (1992). Clin. Exp. Pharmacol. Physiol. 19, 17-23.
Schafer, W., Friebe, W. G., Leinert, H., Mertens, A., Poll, T., Von der Saal, W., Zilch, H., Nuber, B. \& Ziegler, M. L. (1993). J. Med. Chem. 36, 726-732.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1996). SADABS. Version 2.0. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

